Beaming Displays – A New Approach To Lightweight AR Glasses | Syntec Optics

Researchers have developed the first flexible, transparent augmented reality (AR) display screen using 3D printing and inexpensive materials. Creating the new display screen is expected to improve the usage of augmented reality in several fields and applications. By superimposing digital material over the physical world, augmented reality (AR) technology improves how users see and interact [..]

Read More
High-Power Tunable Lasers Revolutionize Integrated Photonics | Syntec Optics

Scalable photonic quantum computing architectures require photonic processing devices. Such platforms rely on low-loss, high-speed, reconfigurable circuits and near-deterministic resource state generators. In a new report, a research team has developed an integrated photonic platform with thin-film lithium niobate. The scientists integrated the platform with deterministic solid-state single photon sources using quantum dots in nanophotonic [..]

Read More
AI Hologram Enhances Physical Layer Security | Syntec Optics

Over the past ten years, computational imaging has made significant advancements. The method combines cutting-edge hardware and algorithms to create photos that conventional cameras can’t catch. Researchers have created a revolutionary method called sparse holography that converts two-dimensional holograms into three-dimensional images using computational imaging techniques. They created a set of algorithms and techniques to [..]

Read More
3D Imaging & AI: A New Era In Body Composition Analysis | Syntec Optics

An innovative endoscopic imaging system with a design that could speed up the deployment of multi-tracer fluorescence-guided surgery (FGS) was described by a research team. The unique hexa-chromatic bioinspired imaging sensor (BIS), which the researchers based on the visual system of the mantis shrimp, is at the core of this design. The sensor consists of [..]

Read More
High Refractive Index Polymers For Eco-Friendly Optoelectronics | Syntec Optics

The tiny visual systems of flying insects have inspired researchers to develop optoelectronic graded neurons for perceiving dynamic motion, enriching the functions of vision sensors for an agile response. With excellent energy efficiency, biological visual systems can accurately detect motion in a complex environment. In particular, flying insects can see objects moving quickly and have [..]

Read More
Ultra-Thin Metasurface Creates Circularly Polarized Light | Syntec Optics

Researchers have created a brand-new category of integrated photonic devices called “leaky-wave metasurfaces” that can transform the light that was once constrained in an optical waveguide into any optical pattern in free space. These devices’ simultaneous control of all four optical degrees of freedom—amplitude, phase, polarization ellipticity, and polarization orientation—is a global first. The devices [..]

Read More
Laser-Plasma Accelerators: A Novel Water-Jet Approach | Syntec Optics

With the aid of colloidal quantum dot technology, scientists have achieved tremendous advancements in developing high-intensity light emitters, producing dual-function devices with previously unheard-of brightness levels. This development puts practical quantum dot laser diodes closer to reality and has potential applications in integrated electronics, photonics, and medical diagnostics. To create high-intensity light emitters that are [..]

Read More
High-Porosity Glasses With Tailored Optical Properties | Syntec Optics

A research team has put forth a new approach to controlling dispersion. Using a single metasurface device created with a unique lens model, they could control the dispersion and create an ultra-thin spectrometer with a nanoscale resolution. The new lens design used in this method, which enables both wavelength splitting and light focusing, makes it [..]

Read More
HoloVAM: Unleashing The Power Of Holographic 3D Printing | Syntec Optics

A well-known incoherent digital holography method is Fresnel incoherent correlation holography (FINCH). In FINCH, a light source divides into two beams of light that are then modified variably by two diffractive lenses with various focal distances and interfered with, creating a self-interference hologram. The hologram recreates the picture of the object at various depths via [..]

Read More
Inkjet-Printed Laser: The Future of Displays | Syntec Optics

As a replacement for intrusive glucose detection technology, the combination of mid-infrared and photoacoustic spectroscopy has shown significant advancements. A dual single-wavelength quantum cascade laser system has been developed using photoacoustic spectroscopy for noninvasive glucose monitoring. As test models for the setup, biomedical skin phantoms with characteristics similar to human skin have been created using [..]

Read More
Nanopore Sequencing Revolutionizes Brain Tumor Analysis | Syntec Optics

Scientists have created a new next-generation DNA sequencing method to find genetic changes in just one molecule. The procedure, known as Concatenating Original Duplex for Error Correction (CODEC), increases the accuracy of next-generation sequencing by about 1000 times and makes a variety of applications possible, including the reasonably priced detection of very small numbers of [..]

Read More
Metasurface Optical Element Advances Atmospheric Research | Syntec Optics

Due to their simple three-dimensional (3D) nanofabrication, numerous shape transformations, appealing manipulation capabilities, and wealth of possible applications in nanophotonic devices, nano-kirigami metasurfaces have gained increasing attention. In this work, researchers show the broadband and high-efficiency linear polarization conversion in the near-infrared wavelength range by introducing an out-of-plane degree of freedom to the double split-ring [..]

Read More
Quantum Light Revolutionizes Time-Domain Spectroscopy | Syntec Optics

A solid-state electronic device array that can be used for compressive spectroscopy has been presented by researchers. It creates time-modulated light at tunable wavelengths. It needs a broadband multicolored light source and can be modulated at a certain frequency, which makes it simple to distinguish from surrounding light. Fabricating many LEDs on a single chip [..]

Read More
Diagnosing Bacterial Infections With Machine Learning | Syntec Optics

According to recent research, an artificial intelligence tool has successfully identified those at the greatest risk for pancreatic cancer up to three years before diagnosis. The researchers said the results indicate that AI-based population screening could be useful in identifying those at increased risk for the disease and could hasten the diagnosis of a disorder [..]

Read More
Palm Vein Biometrics With Hyperspectral Imaging and AI | Syntec Optics

An optical-fingerprint detection system has received a technical patent from the USPTO. The temperature compensation approach can be implemented using a row-based system. In the row-based technique, the first reading is obtained while the matching pixel switches are open, and one or more of the array’s pixels are pixels of a row of the array. [..]

Read More
Inkjet-Printed Laser: The Future of Displays | Syntec Optics

Scientists have produced two-dimensional photonic time crystals that amplify light and could be used to advance laser and wireless technology. Researchers have discovered a method for making these crystals and demonstrated that these strange, artificial substances could enhance the light that shines on them. These discoveries could result in better lasers and more effective and [..]

Read More
GaAs Lasers Grown Directly On Silicon | Syntec Optics

Photonic chips have changed data-intensive technologies. These laser-powered devices send and analyze information at the speed of light, making them a viable answer for artificial intelligence’s data-hungry applications, whether used alone or in conjunction with conventional electrical circuits. A research team has developed a photonic device for AI applications that offers customizable on-chip information processing [..]

Read More
Intravascular Imaging With 3D-Printed Micro-Lens | Syntec Optics

From plastic surgery for cosmetic reconstruction to the creation of artificial organs, three-dimensional (3D) bioprinting is frequently used in our lives. However, due to their innate rheological and structural characteristics, many biopolymers, including nucleic acids, polysaccharides, and proteins, are difficult to form into a desirable 3D shape at the submicron- or nanoscale. A team of [..]

Read More
Cryo-Raman Microscopy: A New Era In Biological Imaging | Syntec Optics

Using optical microscopy, researchers have created a new and very effective technique for quickly assessing the antibiotic susceptibility of samples. The process, known as “Optical Nanomotion Detection,” is incredibly quick, sensitive to single cells, label-free, and calls for a straightforward standard optical microscope fitted with a camera or a cell phone. Antibiotic resistance occurs when [..]

Read More
Optomechanical Dark Matter Detection: A Quantum Leap | Syntec Optics

The “spooky action at a distance” that once alarmed Einstein may soon become as commonplace as the gyroscopes used in today’s smartphones to monitor acceleration. A new study shows that quantum entanglement dramatically increases the accuracy of sensors that can navigate without GPS. Optomechanical sensors track the disturbance forces that cause a sensing object to [..]

Read More