Generating Pseudo-Random Speckle Illumination Patterns Allows For High-Resolution Imaging

Using pseudo-random speckle patterns is an efficient way to image targets, but most approaches require bulky, expensive, complex and slow machinery. To apply this technique to biomedical imaging, such as ultra-thin endoscopy or in vivo neural imaging, a smaller device that can generate random speckles is needed. A team of researchers led by Takuo Tanemura at the University of Tokyo, Japan, has demonstrated the use of a multimode fiber (MMF) in combination with an integrated optical phased array (OPA) chip for single-pixel imaging in potential biomedical applications.

Taichiro Fukui, a PhD student in the group, will present their imaging technique at the Optical Fiber Communication Conference and Exhibition (OFC), to be held 8-12 March 2020 at the San Diego Convention Center, California, U.S.A.

According to Fukui, previous research has shown that illuminating a target using random speckles rather than a focused spot enhances the spatial resolution of an imaging process. “This is because unlike a focused spot, the random speckle illumination consists of interference patterns that contain higher spatial frequency elements,” he said. By integrating an MMF output with an OPA chip, which splits the input light into a number of independent phase shifters, the group was able to generate different random speckle patterns to illuminate the target.

Read more