A group of researchers has developed a high-conductivity material, molybdenum disulfide (MoS2), that could significantly reduce contact resistance and Schottky barrier height within critical parts of electronic and optoelectronic microchips, paving the way for computer and digital imaging components to consume less power relative to their performance than current chipsets. Molybdenum disulfide (MoS2) is so [..]
Read MoreFor the last half-century, silicon (Si) has been the focal point of the semiconductor and modern electronics industries. However, its surface properties are unknown. A group of scientists investigated the terahertz (THz) emission properties of Si surfaces in a new paper. The paper, “Rapid, noncontact, sensitive, and semiquantitative characterization of buffered hydrogen-fluoride-treated silicon wafer surfaces [..]
Read MoreResearchers in biological imaging strive for 3D, high-speed, and high-resolution imaging with minimal photobleaching and phototoxicity. The light-sheet fluorescence microscope (LSFM) contributes to this goal. The LSFM can image live specimens with high spatiotemporal resolution and low photobleaching thanks to a novel excitation and detection scheme. It has demonstrated great promise for the 3D imaging [..]
Read MoreA new study has revealed how diatoms’ glass-like shells help these microscopic organisms perform photosynthesis in low-light conditions. Improved solar cells, sensing devices, and optical components could result from a better understanding of how these phytoplankton harvests and interact with light. They developed a computational model and toolkit that could pave the way for mass-manufacturable, [..]
Read MoreThe transition to full-fledged AR glasses with all-day wear necessitates a high dynamic range display that works equally well in dimly lit indoor and mid-day sun outdoor spaces. Laser beam scanning (LBS) is an ideal (small size-to-power density, weight-to-performance ratios) light source for the application. Light coupling from the source into the optics can help [..]
Read MoreEngineers have created a cohesive final product capable of transmitting information at ultrahigh speed while generating minimal heat by integrating an electronics chip with a photonics chip (which uses light to transfer data). The new electronic-photonic chip design could impact the future of data centers that handle massive amounts of data communication. Data communication speed [..]
Read MoreReservoir computing is a new computational framework based on recurrent neural networks. Researchers have developed a new artificial synapse of alpha-indium selenide (α-In2Se3) that may aid in replicating biological neural processes in neuromorphic devices. Reservoir computing uses artificial synapses to run deep learning algorithms directly without needing data transfer between a memory and a processing [..]
Read MoreMetamaterials are engineered materials that allow us to go beyond the traditional interactions of waves and matter. Light waves that strike metamaterial coatings can be redirected, effectively preventing light from reaching our eyes. The technology enables us to create any pattern, color, or optical feature we can imagine. The “invisibility cloak” is the most visible [..]
Read MoreNASA’s Laser Communications Relay Demonstration (LCRD) project was launched into geosynchronous orbit, 22,000 miles above Earth, and was hosted aboard the United States. The goal is to put optical communications to the test as an alternative to radio waves. The LCRD payload, attached to a support assembly flight (LSAF), produces infrared lasers that transmit data [..]
Read MoreA new imaging technique captures the structure of the human genome with unprecedented fidelity, revealing how individual genes fold at the nucleosome level – the fundamental units that make up the genome’s three-dimensional architecture. The method combines high-resolution microscopy with advanced computational modeling. It is the most comprehensive method for studying the shape of genes [..]
Read MoreResearchers have developed a method for 2D IR spectroscopy capable of resolving a gas-phase sample’s myriad needle-thin lines. The improved resolution was due to two factors. First, the researchers used a frequency-domain rather than standard time-domain methods for generating a 2D spectrum. In standard time-domain methods, light pulses hit the sample sequentially, and the precision [..]
Read MoreNew research provides clinicians with new information about which neurosurgical implant devices are compatible with 7Tesla (7T) magnetic resonance imaging (MRI) scanning. The findings may persuade clinicians to use advanced, high-resolution MRI technology to help patients with certain implants. 7T MRI technology is considered cutting-edge. Its ultra-high-resolution images can aid in diagnosing and planning surgery [..]
Read MoreDespite being widely accepted, the physics of optical waves has some fundamental aspects that are debatable. One of these effects, the anomalous behavior of focused light fields, is being studied in a new light, a quantum light. Quantum light with a well-defined photon number behaves differently than standard focused laser beams, according to researchers. This [..]
Read MoreAdditive manufacturing allows for the creation of novel, multifunctional lenses and components that have the potential to simplify and shrink traditional optical systems. Emerging 3D printing technology converts previously impossible optical component designs into optimized elements. It can improve medical instruments, research tools, communications systems, and consumer devices. The additive process in 3D printing prints [..]
Read MoreResearchers have developed a new decoding method for orbital angular momentum (OAM) holography. Based on cross convolution, it significantly exceeds the upper limit of OAM holography’s information extraction rate. They designed an amplitude-modulated pattern called Amplitude Decoding Key (ADK) as a decoder for information extraction in OAM holography, starting with the spatial frequency domain. A [..]
Read MoreWith global energy-related carbon dioxide emissions reaching an all-time high in 2021, the need for clean energy is greater than ever. Solar energy is one such alternative to fossil fuels. Solar cells have been created using various materials, but selenium (Se) is popular because it is inexpensive, stable, and non-toxic. Its efficiency, however, is limited [..]
Read MoreRisk stratification is essential for identifying high-risk individuals and disease prevention. Researchers investigated the potential of nuclear magnetic resonance (NMR) spectroscopy-derived metabolomic profiles to provide information on multi-disease risk. They conducted the research in addition to conventional clinical predictors for the onset of 24 common conditions, including metabolic, vascular, respiratory, musculoskeletal, neurological, and cancer diseases. [..]
Read MoreResearchers have developed a new laser-based technique that can perform LiDAR and remote chemical measurements at the same time. LiDAR (light detection and ranging) uses a laser to measure distances or ranges. Chemically sensitive LiDAR measurements could be useful for remote chemical mapping, detecting trace amounts of chemicals, monitoring industrial processes, and quality control. Researchers [..]
Read MoreA new photonic chip could be a significant step toward enabling photonic quantum information processors. It can generate and measure quantum states of light in ways previously only possible with large and costly laboratory equipment. The chip is built with lithium niobate, a salt whose crystals have numerous applications in optics. On one side of [..]
Read MoreLight Fidelity (LiFi) is a high-speed broadband mechanism that uses the light spectrum to transmit and receive data. The Visible Light Communication (VLC) technology uses an LED light to transmit data to a receiver, which can be installed in hotspots, laptops, or smartphones. Infrared signals are then sent back to the LED light by a [..]
Read More