A growing number of applications, including smartphone cameras, depend on microlens arrays to boost performance, for example by compensating for the “dead space” around detector pixels. However, although micro-optics are commercially available, they can be prohibitively expensive to fabricate and hard to add to existing devices. Even with traditional microlens fabrication methods (see single point [..]
Read MoreResearchers have developed a new way of operating miniature quantum cascade lasers (QCLs) to rapidly measure the absorption spectra of different organic molecules in the air simultaneously. The technique offers a sensitive method for detecting low concentrations of volatile organic compounds (VOCs), improving the ability to track how these compounds affect human health, industrial processes, [..]
Read MoreEfforts to create reliable light-based quantum computing and quantum key distribution for cybersecurity could benefit from a new study that demonstrates a new method for creating thin films to control single-photon emission. The approach exploits strain at highly spatially localized and spectrally well-separated defect emission sites, or tips, in the 750 to 800 nm regime [..]
Read MoreResearchers conducted extensive literature research, and systematically summarized and compared the sensing abilities of optical refractive index sensors according to their sensitivities and figure of merits. A 3-D technology map was then established to define the standard and development trend for optical refractive index sensors using plasmonic and photonic structures. The technology map, just like [..]
Read MoreAuto lidar (for the autonomous-vehicle revolution), is one of the hottest hot topics today in optics and photonics. But what kind of lidar? The technology’s deceptively simple five-letter name packs in a complex array of choices, from spinning car-top sensors to tiny solid-state lidar scanners largely still on the drawing boards. Angular resolution is the [..]
Read MoreResearchers have demonstrated a method for measuring visible light particles nondestructively. The method could be used to investigate the quantum properties of light. The researchers coupled a single trapped ion to an optical cavity dispersively to extract information about the cavity photon-number distribution in a non-destructive way. The team placed an ionized calcium atom between [..]
Read MoreA team of scientists has developed a microarray detector that uses a tiny blood sample to produce results in less than 30 minutes. Current sepsis diagnosis techniques can take hours or even days to produce the results and diagnosis. Programmed to detect proteins and E. coli, one of the deadly bacteria that can cause the [..]
Read MoreA team of researchers has determined the optical parameters of cellulose molecules with exceptional precision. They found that cellulose’s intrinsic optical birefringence is high enough to be used in optical displays, such as flexible liquid crystal display (LCD) screens or electronic paper. Cellulose, a naturally occurring polymer, consists of many long molecular chains. Because of [..]
Read MoreResearchers have developed a way to improve the accuracy of ovarian cancer surgery, called debulking. Using a novel fluorescence imaging system, they were able to find and remove tumors as small as 0.3 millimeters — smaller than a poppy seed — during surgery in mice. The system allows for real-time information about the size, depth, [..]
Read MoreLensless microscopy with X-rays, or coherent diffractive imaging, is a promising approach. It allows researchers to analyze complex three-dimensional structures, which frequently exist in nature, from a dynamic perspective. Researchers have developed a method in which two images of an object can be taken from two different directions using a single laser pulse. The images [..]
Read MoreLidar is a significant technology for autonomous vehicles to recognize and detect objects in their surroundings. Researchers have targeted the critical component of lidar – optical beam-steering. They created a device that is significantly cheaper to manufacture, lighter, and more resource-efficient than previous variations of the technology. The difference with the new approach to lidar [..]
Read MoreResearchers used two-photon microscopy to demonstrate that chimeric antigen receptor (CAR) T cells can induce tumor regression by directly targeting and killing cancer cells. The study revealed new details about how these immune cells work. It also improved their effectiveness in treating non-lymphoma Hodgkin’s and other B cell cancers. The researchers monitored the activity of [..]
Read MoreA novel germanosilicate glass composition created by adding zinc oxide has properties that could be useful for lens applications. A research group invented the new zinc germanosilicate glass family. The glass samples had a high refractive index, comparable to pure germania glass. The samples also demonstrated good transparency, UV-shielding properties, and glass-forming ability, making them [..]
Read MoreMicroscopy platforms are critical for understanding neuronal activity, but scanning microscope technologies with micron-scale resolution can be slow and produce enormous amounts of data. A group of researchers has developed a novel confocal technique that could aid in the solution to the problem. It is known as Multi-Z confocal microscopy. It can provide two-color fluorescence [..]
Read MoreResearchers have created a solar-absorbing, ultrathin graphene film with unique properties. The thin film is helpful for solar thermal energy harvesting. The 90 nm thick material can rapidly heat to 160 °C when exposed to natural sunlight in an open environment. The material property paves the way for new thermophotovoltaics (the direct conversion of heat [..]
Read MoreCombining multiple photonic imaging techniques could lead to novel, noninvasive tumor detection, and evaluation approaches. Rising cancer incidence will require new techniques to provide diagnostically relevant information quickly and reliably. Researchers believe that optical biopsy could be crucial in diagnosing and characterizing cancer. Less-invasive optical imaging could significantly benefit both clinicians and patients with head [..]
Read MoreResearchers have developed a new method for atomic-scale magnetic field measurement with high precision, both up and down and sideways. The new tool helps map the electrical impulses inside a firing neuron, characterize new magnetic materials and investigate exotic quantum physical phenomena. The technique builds on a platform already developed to probe magnetic fields with [..]
Read MoreBecause not all cancerous tumors respond equally to treatments and radiation therapy, clinicians’ treatment regimens and patient outcomes are complicated. A research team has now used Raman spectroscopy to reveal differences between tumors that responded to treatment and tumors that were resistant to treatment, potentially offering a way to distinguish between the two early in [..]
Read MoreEngineers are creating a photonics education toolkit to integrate photonics into colleges’ engineering and science curriculums. The toolkit can help undergraduates learn practical skills in integrated photonics, such as characterizing and testing photonics integrated circuits, typically taught at the Ph.D. level. The team hopes that by teaching these skills earlier in life, more graduates will [..]
Read MoreResearchers’ experimental photonic switches show promise toward the goal of fully optical, high-capacity switching for future high-speed data transmission networks, demonstrating previously unseen capabilities. The researchers will present the results of a successful scale-up of a 240×240 integrated silicon photonic switch. The device’s name comes from the fact that it accepts 240 optical communication input [..]
Read More