ACEL mPDT Device: Light-Powered Wound Healer | Syntec Optics

A group of researchers has developed a high-conductivity material, molybdenum disulfide (MoS2), that could significantly reduce contact resistance and Schottky barrier height within critical parts of electronic and optoelectronic microchips, paving the way for computer and digital imaging components to consume less power relative to their performance than current chipsets. Molybdenum disulfide (MoS2) is so [..]

Read More
Laser Spectroscopy Reveals Secrets Of Superheavy Elements | Syntec Optics

For the last half-century, silicon (Si) has been the focal point of the semiconductor and modern electronics industries. However, its surface properties are unknown. A group of scientists investigated the terahertz (THz) emission properties of Si surfaces in a new paper. The paper, “Rapid, noncontact, sensitive, and semiquantitative characterization of buffered hydrogen-fluoride-treated silicon wafer surfaces [..]

Read More
OAM Light: A New Frontier In Non-Invasive Medical Diagnostics | Syntec Optics

Currently, radiologists face an excessive workload, which causes fatigue and, as a result, undesirable diagnosis errors. Decision support systems can help radiologists prioritize and make faster decisions. In this regard, medical content-based image retrieval systems that provide well-curated similar examples can be extremely useful. Nonetheless, most medical content-based image retrieval systems operate by locating the [..]

Read More
DEEPscope: A New Era Of Deep-Tissue Imaging | Syntec Optics

Researchers in biological imaging strive for 3D, high-speed, and high-resolution imaging with minimal photobleaching and phototoxicity. The light-sheet fluorescence microscope (LSFM) contributes to this goal. The LSFM can image live specimens with high spatiotemporal resolution and low photobleaching thanks to a novel excitation and detection scheme. It has demonstrated great promise for the 3D imaging [..]

Read More
Autonomous Quantum Heat Engine Paves The Way For Miniaturization | Syntec Optics

A group of researchers has developed a method for achieving high Q factors from robust mechanical structures, significantly reducing device fabrication difficulty and enabling device operation in various environments. High-Q mechanical resonances are desired in many applications, but conventional wisdom relies on minimizing the size of mechanical resonator supporting structures, which makes the fabricated mechanical [..]

Read More
Laser-Wakefield Acceleration Gets A 3D View | Syntec Optics

Femtosecond laser pulses are extremely powerful tools in various applications ranging from medicine to manufacturing to astronomy. Using a time lens, researchers created a high-performance on-chip pulse source. The technology has the potential to enable new applications in quantum and optical computing, astronomy, optical communications, and other fields. Microfabrication techniques, similar to those used to [..]

Read More
New Hope for Vision Loss: Targeting IL-33 | Syntec Optics

High-resolution imaging with adaptive optics (AO) could be useful for determining the integrity of the cone mosaic after macular hole repair. An adaptive optics retinal camera was used to measure photoreceptors before and after macular hole (MH) surgery to assess any cone density changes accurately. The researcher described the results of a small study that [..]

Read More
Leveraging Thermal Imaging Technology For Food Preservation | Syntec Optics

A group of researchers has created a new thermal-imaging sensor that detects microwave radiation 100,000 times more sensitively than currently available commercial sensors, paving the way for novel communications and weaponry technology. The sensor developed by scientists could dramatically improve thermal imaging and provide a foundation for inventions in electronic warfare and radio communications, among [..]

Read More
Self-Healing Chalcogenide Glass: A New Era In Optics | Syntec Optics

A new study has revealed how diatoms’ glass-like shells help these microscopic organisms perform photosynthesis in low-light conditions. Improved solar cells, sensing devices, and optical components could result from a better understanding of how these phytoplankton harvests and interact with light. They developed a computational model and toolkit that could pave the way for mass-manufacturable, [..]

Read More
Holographic Lenses: The Future of 3D Imaging | Syntec Optics

The transition to full-fledged AR glasses with all-day wear necessitates a high dynamic range display that works equally well in dimly lit indoor and mid-day sun outdoor spaces. Laser beam scanning (LBS) is an ideal (small size-to-power density, weight-to-performance ratios) light source for the application. Light coupling from the source into the optics can help [..]

Read More
Integrated Optical Phased Arrays: A New Era Of Optical Tweezers | Syntec Optics

Engineers have created a cohesive final product capable of transmitting information at ultrahigh speed while generating minimal heat by integrating an electronics chip with a photonics chip (which uses light to transfer data). The new electronic-photonic chip design could impact the future of data centers that handle massive amounts of data communication. Data communication speed [..]

Read More
Neuromelanin-Sensitive MRI: Understanding Substance Use | Syntec Optics

A team of researchers is working to advance the development of a quantum-based hyperpolarizer for use in clinical settings. The goal is to significantly improve MRI imaging of metabolic processes, allowing for earlier and more accurate tumor detection. Metabolic imaging with magnetic resonance imaging (MRI) is possible. Until now, signal amplification technologies have been prohibitively [..]

Read More
High Refractive Index Polymers For Eco-Friendly Optoelectronics | Syntec Optics

Reservoir computing is a new computational framework based on recurrent neural networks. Researchers have developed a new artificial synapse of alpha-indium selenide (α-In2Se3) that may aid in replicating biological neural processes in neuromorphic devices. Reservoir computing uses artificial synapses to run deep learning algorithms directly without needing data transfer between a memory and a processing [..]

Read More
Janus Metasurfaces: A Breakthrough In Asymmetric Light Control | Syntec Optics

Metamaterials are engineered materials that allow us to go beyond the traditional interactions of waves and matter. Light waves that strike metamaterial coatings can be redirected, effectively preventing light from reaching our eyes. The technology enables us to create any pattern, color, or optical feature we can imagine. The “invisibility cloak” is the most visible [..]

Read More
A Novel Pump Combiner For Mid-IR Fiber Lasers And Amplifiers | Syntec Optics

NASA’s Laser Communications Relay Demonstration (LCRD) project was launched into geosynchronous orbit, 22,000 miles above Earth, and was hosted aboard the United States. The goal is to put optical communications to the test as an alternative to radio waves. The LCRD payload, attached to a support assembly flight (LSAF), produces infrared lasers that transmit data [..]

Read More
High-Porosity Glasses With Tailored Optical Properties | Syntec Optics

Chalcogenide glasses are covalently bonded amorphous compounds containing one or more elements: sulfur, selenium, and tellurium. Other elements found in chalcogenides include arsenic, antimony, and even germanium. Synthetic chalcogenide glasses, like pure germanium, have high refractive indices. Unlike brittle semiconductors, however, they can be precisely molded to specification rather than being built up through crystal [..]

Read More
Biphoton Digital Holography For Real-Time Photon Entanglement | Syntec Optics

Reflectivity is one of the difficulties in distinguishing a duplicate hologram (hologram verification) from an original. Because a slight change in lighting condition completely changes the reflection pattern displayed by a hologram, a standardized duplicate hologram detector has yet to be developed. Researchers have developed a portable, low-cost snapshot hyperspectral imaging (HSI) algorithm-based housing module [..]

Read More
Height Genetics: Genome Sequencing Unlocks The Secrets | Syntec Optics

A new imaging technique captures the structure of the human genome with unprecedented fidelity, revealing how individual genes fold at the nucleosome level – the fundamental units that make up the genome’s three-dimensional architecture. The method combines high-resolution microscopy with advanced computational modeling. It is the most comprehensive method for studying the shape of genes [..]

Read More
Inertial Confinement Fusion: Improving Illumination Uniformity | Syntec Optics

Researchers demonstrated a new simple laser system that could aid astronomers in the discovery of new Earth-like planets. The laser emits light at one billion pulses per second and comprises only three parts: two mirrors and a sapphire crystal with a trace of titanium. The new source is powered by a green laser, which converts [..]

Read More
Water-Soluble Mold For Advanced Metasurface Manufacturing | Syntec Optics

A research team created a solid-state LiDAR sensor with a 360° field of view (FOV). Made of the metasurface, an ultra-thin flat optical device one-thousandth the thickness of a human hair strand, the new sensor is attracting attention as an original technology enabling an ultra-small LiDAR sensor. The metasurface can greatly increase the viewing angle [..]

Read More