LiDAR Based On Diode-Pumped Alexandrite To Monitor Upper Atmosphere

Higher atmospheric layers (meaning 30-120 km) are becoming more and more interesting for climate researchers, but the areas above 40 km are only directly accessible with sounding rockets, using conventional research methods. A newly-developed LIDAR system based on a diode-pumped alexandrite laser will soon enable such research remotely.

Scientists from the Leibniz-Institute of Atmospheric Physics (IAP) and the Fraunhofer Institute for Laser Technology (ILT) are developing a portable system that works independently. In the future, says the team, such a LIDAR network will be able to deliver data from the atmosphere continuously and on a large scale.

Since the 1990s, the IAP in Kühlungsborn, Germany, has been pioneering research into the mesosphere with its own LIDAR systems. With its flash lamp-pumped alexandrite laser, the bulky system filled a complete ship container. Its use was also limited since it consumed a great deal of energy and required complex alignment.

Read more