Exciton polaritons are hybrid particles that combine light and molecules of organic material, making them ideal vessels for energy transfer in organic semiconductors. Thanks to their photonic origins, they are both compatible with modern electronics and move speedily. However, they are difficult to control, and much of their behavior is a mystery. Researchers have found [..]
Read MoreResearchers have developed a new laser ultrasound technique capable of performing on-demand characterization of melt tracks and detecting the formation of defects in a popular metal 3D printing process. The researchers propose a diagnostic using surface acoustic waves (SAW), generated by laser ultrasound, that can reveal tiny surface and sub-surface defects in laser powder bed [..]
Read MoreScientists have created a novel electromagnet that could help gadgets ranging from tokamaks (doughnut-shaped fusion reactors) to medical instruments that capture detailed human body images. Tokamaks rely on a central electromagnet, a solenoid, to generate electrical currents and magnetic fields that confine the plasma (a hot, charged state of matter made up of free electrons [..]
Read MoreAtrial fibrillation (AF) is diagnosed with an electrocardiogram, the gold standard in clinics. However, sufficient arrhythmia monitoring takes a long time, and many of the tests take place in only a few seconds, which can miss arrhythmia. Researchers have developed a combined method to detect the effects of AF on atrial tissue. The researchers characterized [..]
Read MorePolarization holography is a newly researched field that has gained traction with the development of tensor theory. It primarily focuses on the interaction between polarization waves and photosensitive materials. The extraordinary capabilities in modulating light amplitude, phase, and polarization have resulted in several new applications, such as holographic storage technology, multichannel polarization multiplexing, vector beams, [..]
Read MoreResearchers have developed a quick and cost-effective way to determine the age of malaria mosquitoes using mid-infrared spectroscopy. The new technology is vital for assessing the effectiveness of control interventions as only older mosquitoes can transmit the parasite. The scientists say that their approach could also help with other mosquito-borne and insect-borne diseases. The researchers [..]
Read MoreResearchers have successfully generated strongly nonclassical light using a modular waveguide device, a waveguide-based light source. By combining a waveguide optical parametric amplifier (OPA) module created for quantum experiments and a specially designed photon detector, researchers produced light in a superposition of coherent states. The achievement represents a crucial step toward creating faster and more [..]
Read MoreResearchers have developed a new platform for studying human hepatitis C immunity. The method marries microfluidic technology (which allows scientists to precisely manipulate fluid at a microscopic scale) with liver organoids (three-dimensional cell clusters that mimic the biology of real human livers). In the new hepatitis C immunity modeling system, liver organoids grown from adult [..]
Read MoreOptoelectronic synapses combine non-volatile memory and photodetection functionalities in the same device. It paves the path for the realization of artificial retina systems which can capture, pre-process, and identify images on the same platform. Researchers have used a graphene/Ta2O5/graphene heterostructure to demonstrate optoelectronic synapses. The graphene interface exhibits synapse characteristics when visible electromagnetic radiation of [..]
Read MoreA group of experimental physicists developed a device that behaves like a memristor while acting on quantum states and encoding and transmitting quantum information. The device is a quantum memristor. Creating such a device is difficult because the dynamics of a memristor defy usual quantum behavior. The physicists have overcome the challenge by using single [..]
Read MoreThe bright-field (BF) optical microscope is a traditional bioimaging tool that has been recently tested for depth discrimination during the evaluation of specimen morphology. However, existing approaches require dedicated instrumentation or extensive computer modeling. Now, researchers have developed a direct method for three-dimensional (3D) imaging in BF microscopy, applicable to label-free samples, where they use [..]
Read MoreResearchers have calculated the maximum theoretical limit for optoelectronic devices, the point at which the laws of quantum mechanics prevent microchips from becoming any faster. Optoelectronics are the fastest devices globally — systems that use light to control electricity. The new study outlines the limit for optoelectronics by calculating the speed at which the most potent [..]
Read MoreA fast-evolving understanding of materials and physical processes is critical to security applications. Febetrons generate X-rays to photograph objects moving at extremely high speeds as part of a detonation and allow the measurement of their position, velocity, shape, and internal density profiles. Powering the Febetrons are capacitor modules. Researchers have developed a new “K-module” device [..]
Read MoreResearchers have significantly improved micro-computed tomography, specifically imaging with phase contrast and high brilliance x-ray radiation. They have developed a new micro-structured optical grating and combined it with new analytical algorithms. The new approach makes it possible to depict and analyze the microstructures of samples in greater detail and investigate a broad spectrum of samples. [..]
Read MoreA study on ground squirrels shows, not only do mitochondria produce bioenergy in the cone-shaped photoreceptors in the retina of the eye, they also act as micro-lenses that redirect light to the tapering outer reaches of these cells where light is converted into electrical signals. The finding provides a clearer picture of the evolution and [..]
Read MoreRaman spectroscopy is a powerful analytical technique that has been spotlighted for bacteria detection and diagnosis of diseases ranging from infection to cancer. However, as Raman signals are usually weak and can easily be swamped by interfering background signals, deploying Raman spectroscopy can be very challenging in the clinic. One solution to enhance the signals [..]
Read MoreResearchers developed and tested a new blood vessel imaging approach that will allow investigators to capture images of blood vessels at different spatial scales, which will speed up imaging-based research in the lab. The “VascuViz” method, tested in mouse tissues, uses a quick-setting polymer mixture to fill blood vessels and make them visible in multiple [..]
Read MoreNanopositioning systems move and arrange stages and samples with incredible precision at nanometer and sub-nanometer scales (motion control). They can position themselves within tens of nanometers and possibly even single-digit nanometers, making them ideal for applications requiring extremely precise measurement, such as space telescopes and microscopes. And the capabilities of nanopositioning systems go beyond that. [..]
Read MoreTunable focusing is a desirable property in many optical imaging and sensing technologies. Still, it traditionally requires bulky components that cannot be integrated on-chip and have slow actuation speeds. Integration of metasurfaces into electrostatic micro-electromechanical system (MEMS) architectures have recently shown promise in overcoming these challenges but has limited out-of-plane displacement range while requiring high [..]
Read MoreThe most common type of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a five-year survival rate of less than 10%. This deadly cancer is difficult to diagnose and treat in part because the tumors are very dense, preventing imaging dyes and medicines from reaching the cancerous cells packed inside. Now, researchers have demonstrated a nanotheranostic [..]
Read More