
Researchers have built an intelligent quantum sensor – the size of about 1/1000 of the cross-section of a human hair – that can simultaneously detect the intensity, polarization, and wavelength of light, tapping into the quantum properties of electrons. The breakthrough could help advance the fields of astronomy, healthcare, and remote sensing. Twisting certain materials [..]
Read More
Researchers have found a way to identify lung cancer at the cellular level in real-time during a biopsy, promising to detect the disease earlier and with more confidence. The researchers call the new technology NIR-nCLE. It combines the cancer-targeted near-infrared (NIR) tracer with a needle-based confocal laser endomicroscopy (nCLE) system, modified to detect the NIR [..]
Read More
Researchers have studied unusual regimes of operation of a laser with a gain medium with a large Raman scattering cross-section, which is often inherent in new types of gain media such as colloidal and epitaxial quantum dots and perovskite materials. A strong electron-phonon coupling characterizes these media. Using the Fröhlich Hamiltonian to describe the electron-phonon [..]
Read More
While solar cells are a great alternative to fossil fuels, the environmental impact of the processes involved in manufacturing solar cells has been a concern. Solar panel fabrication often involves toxic materials such as cadmium and industrial waste. In a new study, researchers have developed an eco-friendly method that eliminates toxic cadmium in the production [..]
Read More
Researchers are developing a low-cost handheld device that could cut the rate of unnecessary skin biopsies in half and give dermatologists and other frontline physicians easy access to laboratory-grade cancer diagnostics. The team’s device uses millimeter-wave imaging — the same technology used in airport security scanners — to scan a patient’s skin. Healthy tissue reflects [..]
Read More
Because of their capacity to measure heart rates (HRs) without contact with human skin, photoplethysmography imaging (PPGI) sensors have been the focus of considerable attention. A PPGI sensor uses a camera capable of face detection and records images of facial skin, as the skin can represent changes in arterial blood volume between the systolic and [..]
Read More
Conjunctival goblet cells (CGCs) are specialized epithelial cells secreting mucins to form the mucus layer of the tear film. The mucus layer spreads the tear film on the ocular surface for protection. The dysfunction and death of CGCs cause tear film instability and are associated with various ocular surface diseases, including dry eye disease (DED). [..]
Read More
Researchers have developed new polymer materials that are ideal for making the optical links necessary to connect chip-based photonic components with board-level circuits or optical fibers. The polymers can be helpful to easily create interconnects between photonic chips and optically printed circuit boards, the light-based equivalent of electronic printed circuit boards. These new materials and [..]
Read More
Researchers have developed a temperature sensing method using naturally occurring atom-like defects in diamonds. The defects, known as Nitrogen-Vacancy (NV) defects, are naturally occurring flaws in diamonds (two adjacent carbon atoms replaced by a nitrogen atom and a hole). They are easy to obtain and have unusual quantum and nonlinear optical properties. Among them is [..]
Read More
A new MRI innovation that makes cancerous tissue glow in medical images could help doctors more accurately detect and track cancer progression over time. The MRI innovation creates images in which cancerous tissue appears to light up compared to healthy tissue, making it easier to see. This new technology has promising potential to improve cancer [..]
Read More
In-sensor computing allows image sensors with internal computing capabilities to reduce communication latency and power consumption for machine vision in distributed systems and robotics. Because of its tunable electrical and optical properties and amenability for heterogeneous integration, two-dimensional semiconductors have several advantages in creating intelligent vision sensors. Researchers have developed a multipurpose infrared image sensor [..]
Read More
Dual-detection impulsive vibrational spectroscopy (DIVS) is a Raman spectroscopy technique. It permits monitoring two types of vibrational signals simultaneously. It offers ultrafast, real-time spectral detection over the low-frequency, or terahertz area of the Raman spectrum and the fingerprint region at a rate of 24,000 spectra per second. The fingerprint and terahertz spectral areas provide complementary [..]
Read More
Increasing the acquisition speed of three-dimensional volumetric imaging is essential – particularly in biological imaging – to unveil specimens’ structural dynamics and functionalities in detail. In conventional laser scanning fluorescence microscopy, volumetric images are constructed from optical sectioning images sequentially acquired by changing the observation plane, limiting the acquisition speed. Researchers have developed a novel [..]
Read More
A research team developed a technique that uses condensation to noninvasively refill liquid marbles with water. The method could improve the viability of applications such as drug delivery. It could also establish improved opportunities for the droplet-size microreactors to see use in opto- and microfluidics. Liquid marbles are droplets of solution that wrap in a [..]
Read More
Lenses play a crucial role in the quality of the images produced by a machine vision system since they determine the sharpness of the image on the camera sensor. As lenses transmit light the first consideration is the light wavelengths used, as this has a major influence on both chromatic aberration and light transmission. This [..]
Read More
Researchers have invented a low-cost continuous fever screening system – SIFTER – based on an RGB-thermal camera. The system can automatically take temperature readings of people walking by, going about their own business, up to three meters away – no one has to stand in front of a camera for a few seconds to take [..]
Read More
Since the earliest scientific developments, researchers have looked to nature as an inspiration source for designing novel functional devices. The so-called bioinspiration and biomimetic designs enabled the development of multifunctional sensors. Recently, researchers developed an ultrasensitive flexible optical waveguide sensor bioinspired in orb webs. They named it bioinspired multifunctional flexible optical sensor (BioMFOS). The multifunctional [..]
Read More
The increasing demand for high-resolution and real-time recognition in radar applications has fueled the development of electronic radars with increased bandwidth, high operation frequency, and fast processing capability. However, the generation and processing of wideband radar signals place an additional hardware burden on complex and fast electronics, limiting its capability for high spatial resolution applications. [..]
Read More
Spatial neglect damages the neural networks that support spatial attention and related cognitive and motor functions. People’s spatial orientation is altered, which can cause issues with balance, navigation, memory, reading, and other cognitive processes. While progress has been made in detecting post-stroke spatial neglect, treatment strategies have lagged. Researchers have developed a treatment approach based [..]
Read More
Some optical sensing chip designs contain nearly as small nanostructures as the biological and chemical molecules they’re searching for. These nanostructures improve the sensor’s ability to detect molecules. But their diminutive dimensions make it difficult to guide the molecules to the correct area of the sensor. Researchers have created a new sensor that aims at [..]
Read More