All-Optical Diffractive Neural Networks Process Broadband Light

Diffractive deep neural network is an optical machine learning framework that blends deep learning with optical diffraction and light-matter interaction to engineer diffractive surfaces that collectively perform optical computation at the speed of light. A diffractive neural network is first designed in a computer using deep learning techniques, followed by the physical fabrication of the designed layers of the neural network using e.g., 3-D printing or lithography. Since the connection between the input and output planes of a diffractive neural network is established via diffraction of light through passive layers, the inference process and the associated optical computation does not consume any power except the light used to illuminate the object of interest.

Developed by researchers at UCLA, diffractive optical networks provide a low power, low latency and highly-scalable machine learning platform that can find numerous applications in robotics, autonomous vehicles, defense industry, among many others. In addition to providing statistical inference and generalization to classes of data, diffractive neural networks have also been used to design deterministic optical systems such as a thin imaging system.

Read more