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A B S T R A C T  

The pressure to “push the polymer envelope” is clear, given the exploding range of demanding 
applications with optical components. There are two keys to success: 

1. Expanded range of polymers with suitable optical properties 
2. Sophisticated manufacturing process options with an overall system perspective: 

  Tolerances and costs established relative to need (proof-of-concept, prototype, low to high 
volume production). 

  Designed to integrate into an assembly that meets all environmental constraints, not just size and 
weight, which are natural polymer advantages. (Withstanding extreme temperatures and chemical 
exposure is often critical, as are easy clean-up and general resistance to surface damage.) 

  Highly repeatable. 

The thesis of this paper is that systematically innovating processes we already understand on materials 
we already know can deliver big returns. To illustrate, we introduce HRDT1. High Refraction 
Diamond Turning, a patent-pending processing option to significantly reduce total costs for high 
index, high thermal applications. 
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Materials and Processing: Setting the Stage 

Given the widespread use of polymers, it’s easy to forget the entire industry is less than 150 years old. 
Nearly everything about these materials and where they can be used has changed dramatically from 
those early days and continues to evolve rapidly. You can see this most clearly in optical applications, 
which have expanded from toys and eyeglasses to advanced blood analyzers, disposable diagnostic 
cameras, guided weapons systems, head-mounted GPS solutions, sophisticated office and industrial 
equipment, high performance electronics, and a host of biometric and telecommunication uses. The 
best of these applications do more than replace glass components with polymer ones; they provide 
new solutions to previously intractable problems, such as one-time use without expensive sterilization, 
or reusing the same components in very different packaging. 

While cost and malleability remain important polymer hallmarks, the real keys to continued polymer optics 
expansion are the specific characteristics of available materials and the sophistication of manufacturing 
processes in implementing designs. The drivers are the relentless need to integrate more and more 
components into smaller, lighter packaging, at lower cost and higher quality with a wider range of optical 
spectrums (IR and UV) and environmental resistance (higher heat, increased thermal stability). 

Material trends 

Figure 1 is a timeline of the major modern optical polymers and their impact. 
 

 

Acrylic or 
polymethyl 
methacrylate 
(PMMA); first 
optical lenses are 
made for 
ophthalmic 
applications. 
 

WWII sees 
extensive use of 
acrylic for aircraft 
canopies and 
lightweight window 
applications. 
 

Kodak introduces 
plastic optics in low 
cost fixed focus 
cameras with 
PMMA and 
polystyrene (PS). 
 

Optical grade 
polycarbonate is 
widely introduced 
for ophthalmic 
lenses, safety 
glasses, and 
firemen’s shields. 
 

Polyetherimides 
(PEI) and poly-
ethersulfones (PES) 
are recognized as 
excellent near IR 
transmitters with 
high heat tolerance, 
perfect for the newly 
exploding telecom 
market. 
 

Cyclic olefins 
provide excellent 
low moisture 
absorption 
substitute for 
PMMA, with greater 
thermal stability. 
 

Late 1990sEarly 1983 1960s 1940 1936 

 
Figure 1. Major introductions of common polymers 

Advances in polymer materials stagnated for many years until breakthroughs in the 1990s greatly 
expanded the options for temperature ranges, transmission quality and stability of the index of 
refraction. This has given us many more ways to address particular application needs. 

For example, polyetherimides and polyethersulfones are now available in optical grades. These 
plastics exhibit higher transmission quality than previously possible in the near-IR region and 
withstand operating temperatures from below zero to above 200°C. Several grades of acrylic also 
deliver relatively high transmission quality from 390 to 1600 nm, with improved temperature 
operating ranges to minimize the dN/dT (shift of index with respect to temperature) and general 
thermal stability. Finally, current cyclic olefin products feature extremely low moisture absorption. 
The issues of moisture absorption and thermal expansion relate directly to the stability of the index of 
refraction shift with respect to temperature. Each type of polymer has an increasing number of grades 
available that affect important characteristics such as flow, purity and environmental durability. 
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Birefringence, where light separates into two diverging beams as it passes through a doubly refracting 
optic, is not related to any specific material but remains an important material consideration. It can 
have disastrous effects on polymer systems that are sensitive to polarization. Because birefringence 
effects are process-driven, materials with higher flow rates are less susceptible. Component design is 
also a factor in reducing birefringence. When molding components, the harder a component is to fill 
(which requires more injection pressure) or pack (more holding pressure), the more likely the 
occurrence of birefringence, although several post molding operations can be implemented to reduce 
its effects. If, instead of molding, the components are manufactured using diamond turning, 
birefringence is usually not an issue. 
 

 Unit PMMA Poly-
styrene 

Polyether-
imide 

Poly-
carbonate 

Methyl-
pentene ABS Cyclic Olefin 

Polymer Nylon NAS SAN 

Trade Name  Plexiglas Styron Ultem Lexan TPX Acrylon Zeonex Polyamide Methyl Styrene 
Acrylonitrile

nf 
(486.1 nm)  1.497 1.604 1.689 1.593 1.473  1.537  1.575 1.578 

nd 
(589 nm)  1.491 1.590 1.682 1.586 1.467 1.538 1.530 1.535 1.533–

1.567 1.567–1.571

Re
fra

ct
iv

e 
In

de
x 

nc 
(656.3 nm)  1.489 1.585 1.653 1.580 1.464  1.527  1.558 1.563 

Abbe Value Vd  57.2 30.8 18.94 34 51.9  55.8  35 37.8 

Transmission %1 92–95 87–92 82 85–91 90 79–
90.62 90–92 88 90 88 

Max Continuous 
Service Temp. 

°F 
°C 

161 
72 

180 
82 

338 
170 

255 
124   253 

123 
179.6 

82 
199.4

93 
174–190
79–88 

Water 
Absorption %3 0.3 0.2 0.25 0.15   <0.01 3.3 0.15 0.2–0.35 

Haze % 1–2 2–3  1–3 5 12 1–2 7 3 3 

dN/dT x10-5/ºC –8.5 –12.0  –11.8–14.3   –8.0  –14.0 –11.0 

Key Advantages  

High 
transmission 
& purity 

Scratch 
resistance 

Chemical 
resistance 

High Abbe 
value 

Low 
dispersion 

High melt flow 

High 
index 

Clarity 

Impact 
resistance 

Thermal & 
chemical 
resistance 

High index 

Impact 
strength 

Temperature 
resistance 

Chemical 
resistance 

Durable Low moisture 
absorption 

High 
transmission & 
purity 

Good thermal 
stability 

Chemical 
resistance 

Good 
index 
range 

Stable 

1 At 400–800 nm, 3 mm CT 

2 Uncoated luminous transmittance: 79% at thickness 6.35 mm; 90.6% at thickness 0.381 mm 

3 Per 24 hours 

Figure 2. Molded finished optics: Major characteristics of common polymers 
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Manufacturing process trends 

With respect to manufacturing polymer optics, there are two main options: molding, the older of the 
two options and by far the most common choice for production runs, and single point diamond 
turning, which has revolutionized the creation of extremely precise optical mold inserts and in many 
cases, prototype components. 

Molding technologies continue to improve 

Molding is a two-step process, which first requires creating a reusable mold and then uses plastic 
injection molding equipment to produce extremely consistent components in high volume at low cost. 
� Industry-wide, the lead times to create molds are becoming shorter. For example, at Syntec, we 

have cut our lead times down from 12 or 16 weeks to an average of 6 to 8 weeks, and in some cases 
as few as 2 to 4 weeks. We build all key elements of an optical mold into a standard base that 
allows us to interchange a unitized section of the mold. Where applicable, unitized sections are 
cheaper but have all the robust properties of a full frame traditional mold. 

� Molding machines have become far more sophisticated, which has substantially reduced the 
amount of process time (and thus cost) to mold acceptable parts. New machines have closed loop 
controllers, finite injection control and pressure transducers, data tracking and graphing options that 
put a lot more science at the fingertips of the process technician, enabling rapid setup and timely 
corrections. 

Single point diamond turning proves its worth 

In broad use for optical applications since the mid 1990s (although several companies began use in the 
1970s and 80s), a single point diamond turning system, or SPDT, enables skilled manufacturers to 
produce extremely precise optical mold inserts, eliminating the old grind and polish mold insert 
methods that are close but not close enough when you are dealing in fractions of a fringe on aspheric 
forms. SPDT allows for highly accurate surface geometry generation, including toric, aspheres, and 
diffractives. Equally important, SPDT has allowed creators of optical molds to truly compensate for 
shrinkage of plastics in all directions, in order to accurately produce and reproduce difficult 
geometries in ever lower process cycle times. In some instances, you may diamond turn an aspheric 
form such that when full shrinkage has occurred, the final product is spherical. The same 
compensation methods can also be used to shorten production molding cycle times through better 
control of shrinkage. 

In short, SPDT can produce finished optics that are highly reliable without requiring a mold, making it 
only natural to use SPDT to turn plastic materials as prototype lenses. This obviously reduces the lead-
time (SPDT samples can be done in as little as a week). It also defers the need for significant capital 
investment in a mold, allowing for multiple proof-of-concept runs at low cost. (Many times, polymer 
optics applications languish on designers' laptops because the start up expense of a mold and mold 
processing, on average $20K, exceeds the R & D budget for the project. SPDT offers the possibility of 
a proof-of-concept solution completed in under a month for less than $5K.) Moreover, if it will be 
some time before volume needs ramp up, SPDT is an excellent approach for delivering early 
production components, deferring mold costs even longer. 

Not all materials are suitable for SPDT. Only PMMA, Polystyrene, Polycarbonate and Cyclic Olefins 
are appropriate, which effectively eliminates a whole range of high refraction, high thermal 
applications that require PEI (polyetherimide) or PES (polyethersulfone) materials. However, HRDT, 
or High Refraction Diamond Turning, described in Section 2, is a patent-pending process for 
achieving repeatable PEI or PES material surfaces that are over seven times smoother than those 
possible with SPDT alone (between 50 to 60 angstroms versus 400 to 450 angstroms). 
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  Polymers suitable for both SPDT and HRDT Polymers suitable for HRDT only 

 Unit PMMA Polystyrene Cyclic Olefin 
Polymer Polyetherimide Polyethersulfone 

Trade Name  Plexiglas Styron Zeonex Ultem Radel 

nf 

(486.1 nm) 
 1.497 1.537 1.689 1.604 1.671 

nd 

(589 nm) 
 1.491 1.530 1.682 1.590 1.653 

Re
fra

ct
iv

e 
In

de
x 

nc 

(656.3 nm) 
 1.489 1.527 1.653 1.585 1.641 

Abbe Value Vd  57.2 30.8 55.8 18.94 22 

Transmission %1 92–95 87–92 90–92 82 80 

Max Continuous 
Service Temp. 

°F 
°C 

161 
72 

180 
82 

253 
123 

338 
170 

356 

180 

Water Absorption %2 0.3 0.2 <0.01 0.25 0.5 

Haze % 1–2 2–3 1–2  3.9 

dN/dT x10-5/ºC –8.5 –12.0 –8.0   

Key Advantages  

High transmission 
& purity 

Scratch resistance 

Chemical 
resistance 

High Abbe value 

Low dispersion 

High melt flow 

High index 

Clarity 

Low moisture 
absorption 

High transmission 
& purity 

Good thermal 
stability 

Impact resistance 

Thermal & chemical 
resistance 

High index 

Impact resistance 

Thermal & chemical 
resistance 

High index 

1 At 400–800 nm, 3 mm CT 

2 Per 24 hours 

Figure 3. Diamond-turned finished optics: Major characteristics of suitable polymers 
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Molding and diamond turning processes combine for optimum flexibility 

For production applications where the optics and overall application requirements are well understood, 
molding is nearly always the right choice. The upfront cost of the mold pales in comparison to the 
overall low unit cost. 

Many applications, however, are breaking new ground. The requirements may be clear, but there are 
severe system constraints on the optical components. Or the optics demands may be straightforward 
but the overall level of application innovation requires several iterative prototypes to test usability and 
ease of integration. Ideally, either SPDT or HRDT, depending on material used, can be used for proof-
of-concept, prototypes, and possible beta production needs. This approach shortens the time between 
development cycles (a major cost savings) and eliminates the need for multiple interim molds and/or 
sets of tooling. 

Some applications are inherently low volume or novel enough that volume may take some time to 
develop. Eliminating the cost of molds and tooling may be just enough to cost justify their 
implementation. It is thus clear that the more ways polymer optics manufacturers can solve specific 
problems, the further it will be possible to push the polymer envelope. 

 
 Proof-of-concept Quick Prototype Small Beta Production Full Volume Production 

 Molded SPDT HRDT Molded SPDT HRDT Molded SPDT HRDT Molded SPDT HRDT 

PMMA � � � � � � � � � � � � 

Cyclic Olefin � � � � � � � � � � � � 

Polystyrene � � � � � � � � � � � � 

PEI � – � � – � � – � � – � 

PES � – � � – � � – � � – � 

 � Usually lowest total cost choice (over 95% of the time) 

 � Alternative choices, sometimes desirable for unusual geometries or exceptionally tight schedules 

 � or � New flexibility 
 – Currently not supported 
 Note: First mold approx. $12K–$25K; each subsequent mold approx. $11K–$20K  

Figure 4. Pushing the envelope adds flexibility 
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HRDT — High Refraction Diamond Turning: A Processing Breakthrough 

SPDT is a powerful tool, but used traditionally, its limitations are barriers to “pushing the polymer 
envelope.” SPDT only works with certain “soft” materials, including non-ferrous metals; and PMMA, 
Polystyrene, Polycarbonate and Cyclic Olefins optical polymers. The limitation to non-ferrous metals 
is not material since Nickel-plated 420 Stainless Steel provides an excellent solution for mold inserts. 
However, the inability to diamond turn the high refraction, high index PEI materials, such as Ultem, is 
another matter. At Syntec, we frequently field requests to create proof-of-concept or prototype 
solutions using these materials, particularly for telecom, datacom and some defense applications. 

Goal 

In the 1990s, when telecom was booming and investment money flowed like wine, companies did not 
seriously object to the need for prototype mold tooling to prove concepts, although they were bothered 
by the lead-time and helped force the issue of fast turnaround machining of molds. But nevertheless 
molds it was. 

Today there has been a steep sell-off in the telecomm market, putting financial pressure on companies 
who are simultaneously facing strong competitive challenges. A number of promising opportunities 
have been scuttled once they reached the proof-of-concept phase simply because of the capital 
investment required. This market has longed for quick output, diamond turned Ultem prototypes, 
which are widely held to be impossible, even by GE and IBM researchers, who found that a surface of 
about 450 angstroms (Å) was the best achievable with SPDT — much too rough for good 
performance. However, two of us at Syntec, Rick Arndt, VP of Tooling and myself, believed we could 
treat the current Ultem material and/or adapt the current SPDT process to meet broad industry 
performance needs of high index, high heat, and transmissive at 1550 nm. 

Technical background 

Many thermoplastics can be diamond turned to fairly coarse accuracy of within +/- 0.1 mm, for 
example, sufficient for forming components used in a variety of commercial products. Only a subset 
of known thermoplastics can be diamond turned to the high levels of precision needed for forming 
optical surfaces, where RMS surface roughness can be no greater than 100 Å and is preferably much 
less. Several types of acrylics, for example, have been found to provide acceptable results for optical 
components using diamond turning, although even these materials can prove difficult to work with 
except under specific conditions. Many polycarbonate materials prove too soft for diamond turning to 
desired optical standards. 

It is widely recognized in the optical fabrication arts that a plastic material must have suitable surface 
energy characteristics for precision diamond turning. Among other characteristics, a particular 
material must have suitable durometer, or hardness, in order to be effectively diamond-turned. Some 
polycarbonates, as noted above, are simply too soft. Other types of plastic prove too brittle. 
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Among plastics of growing interest for telecommunications and other applications are those having 
high transmittivity at red and near infrared (IR) light wavelengths, particularly from about 1200 nm to 
1600 nm. Two amorphous thermoplastic resins having this transmittivity property are polyetherimide 
(PEI), manufactured and marketed by General Electric Company, Pittsfield, MA as Ultem, and 
polyethersulfone (PES), manufactured and marketed by Solvay Advanced Polymers LLC, Alpharetta, 
GA as Radel A. Having relatively high indices of refraction (about 1.68 for PEI), high dimensional 
stability, and good resistance to chemicals and fatigue, both PEI and PES are promising candidates for 
demanding applications using light in the IR region. Their high thermal properties make PEI and PES 
particularly advantageous for use in optical fiber couplers in data communications and 
telecommunications applications. Having high glass transition temperatures and being thermally stable 
at temperatures in excess of 200°C, these plastics can withstand the high levels of heat required for 
wave reflow solder processing in printed circuit board fabrication. 

As resins, PEI and PES have been primarily developed and marketed as thermoplastics for injection 
molding. As noted above, this allows lens elements to be fabricated inexpensively from these 
materials. According to product literature provided for these resins, precision machining operations, if 
described at all, are secondary operations at best, that may be employed for specialized use of these 
materials. As is noted in literature provided by various plastic components fabricators, PEI and PES, 
without filler materials, are acknowledged to be particularly difficult to machine. The durometer or 
hardness of stock PEI or PES thermoplastics is very high, not amenable to precision single point 
diamond turning. For example, a number of plastic component fabricators, in comparing the overall 
machinability of various plastics, rate PEI and PES as significantly more difficult to machine than 
other optical plastics; with a rating of at least 7 on a scale from 1 to 10, where 10 indicates the most 
difficult. 

To make versions of these thermoplastics that are more suitable for machining operations, 
manufacturers mix them with various glass fillers and other materials. However, while these filler 
materials allow easier machining, they render such thermoplastics as unusable for optical applications. 
Thus, optical-grade PEI and PES materials, being difficult to machine except to coarse precision, 
appear to offer little promise as candidates for high-precision optical machining. 

For prototyping, as well as for small production runs, it would be highly advantageous to be able to 
fabricate lens elements from these and similar high index, high thermal property thermoplastic 
materials using single point diamond turning. However, these materials, as supplied by the 
manufacturers, are particularly poorly suited to single point diamond turning at the precision needed 
for optical quality. Conventional procedures for handling and pre-shaping lens blanks from these 
materials do not yield components with a compatible surface for diamond turning to form an optical 
surface. Therefore, it is widely held among those skilled in the optical plastic fabrication arts that PEI 
and PES, and similar types of high index, high thermal property thermoplastics, cannot be 
satisfactorily diamond turned to the optical quality needed for prototype or production-quality lens 
elements. 
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Process 

We hypothesized that lens surface failures, which even the best standard SPDT machining produced, 
were related to a relievable surface energy issue. (Note the surface roughness of the topmost plot file 
in Figure 5.) If this were true, we further hypothesized that we could relieve the base material and then 
diamond turn it smoothly. GE recommends annealing any substrates prior to machining, which 
relieves internal stress and prevents catastrophic material failures, but doesn’t resolve the 
microstructure failures at the surface level. We asked ourselves, what would happen if we developed 
a custom annealing process that was absolutely repeatable for a given design, based upon material, 
lens geometry, lens thickness and mass? We further asked, what would happen if in conjunction, we 
also applied a diamond machining process that takes into consideration diamond shape, rake angle, 
feed rate, and turning speed? 
 

 

 

Top: 
Typical SPDT machining; 390 Å achieved; 
optically unacceptable 

Left: 
Early HRDT attempt; 163 Å achieved; 
repeatable but optically unacceptable 

Bottom: 
HRDT success; 60 Å achieved; fully 
repeatable and optically acceptable 

 

Figure 5. SPDT and HRDT process results 
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Our very first attempt proved that at an RMS roughness of 163 Å, we were going in the right 
direction, not optically satisfactory but much better than traditional SPDT. Our next trials broke the 
100 Å barrier. After further study of the lens geometry and refinement of the annealing process, we 
were able to reduce the RMS surface roughness still further, achieving repeatable results of 80 Å, then 
60 Å, and finally just below 50 Å RMS. Figure 5 shows plot files of both initial and later tests of 
HRDT lenses, contrasted with the best possible outcome with traditional SPDT. 

Findings 

It is critical to understand the desired geometry, and to systematically adjust both the level of 
annealing and all factors of standard diamond turning process according to that geometry. Once these 
calculations are complete, you can consistently achieve desired high index, high thermal optical 
outcomes using HRDT. For example, there are slightly different calculations for using HRDT on each 
of the lenses shown in Figure 6. 

 

Figure 6. Lenses produced using HRDT 

These approaches, which are mandatory for PEI and PES materials, can be customized and applied to 
other accepted materials for diamond turning. For example, extended annealing of acrylics can relieve 
the material so there is much less possibility of the birefringence that can occur in some applications if 
minor surface fractures are present from stress of machining. 
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The Bottom Line: Where (and How) Does HRDT Pay Off? 

This section delves more deeply into situations where HRDT translates into production savings for 
known applications and, perhaps more important, lowers the cost of discovery in developing 
innovative applications. 

Applications that fit 

HRDT opens new opportunities for every application whose optical components can be satisfied with 
PEI or PES materials, in particular: 
� High heat, high index of refraction requirements (i.e., data communications evanescent coupling 

devices). 
� Optics that will be or could be mounted to a PC board prior to the wave reflow process. (This is 

a huge assembly cost saver in large volume applications.) 
� New innovation opportunities where R & D funds are limited or short lead times are needed. (For 

example, producing five to ten samples using conventional molding will generally require from 
$12,000 to $25,000 in tooling, depending on complexity, plus up to $2,000 in processing and 
verification for a total of $14,000 to $27,000. If HRDT is appropriate, the same five to ten samples 
can be produced for $2,500 to $5,000 depending on complexity, for savings of up to 5X. Also, the 
mold takes from 4 to 8 weeks to produce, while HRDT finished samples can be completed in about 
a week, a savings of 3 to 7 weeks. Companies justly place a high value on each week of time saved, 
sometimes hundreds of thousands of dollars.. Conservatively the value of HRDT in terms of 
shortening development cycles is at least $10,000 per week, or in this case, $30,000 to $70,000 per 
cycle.) 

� Generally proven design and packaging but inherently low volume, since there are no additional 
costs for molding and tooling. 

� Newer designs and packaging (high or unknown volumes). 
� High need for concurrent development approaches with far fewer proof-of-concept and prototype 

cycle constraints. 
� Requirement to leave choices open for final production based on volume and turnaround. 

Total cost implications 

Of course, total cost for any application depends on numerous variables, well beyond the scope of this 
paper to discuss. Nevertheless, we can provide a general framework for estimating the likely range of 
potential savings. This can be valuable in understanding just how to use these expanded polymer 
material and processing options together best to optimize total costs. 

1. Determine whether the optical components are low or high complexity. In general, this will 
affect the cost of the mold and tooling. 

2. Consider whether the entire application is well understood or innovative, that is, breaking new 
ground in packaging, user interface or functionality. 

3. Estimate the likely number of proof-of-concept, prototype, and beta or limited volume 
production cycles, if any. High optics complexity is likely to increase the number of prototype 
cycles, while high innovation is likely to increase the proof-of-concept cycles and also require 
one or more low volume beta production cycles. 

4. Optionally, consider a value for every week of development time saved. Generally this savings 
will equal the number of weeks for creating a mold, less one, times the number of proof-of-
concept or prototype cycles where a new or changed mold is required. 
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Figure 7 below compares sample savings for different scenarios. (Look for a sample Total Cost 
Calculator to be available on the Syntec website, where you can enter your own values.) 

 

Low Optics Complexity High Optics Complexity 

Known Application Innovative Application Known Application Innovative Application  

Cycles HRDT No HRDT Cycles HRDT No HRDT Cycles HRDT No HRDT Cycles HRDT No HRDT

Proof-of-concept 0 – – 1 $2,500 $14,000 0 – – 2 $10,000 $49,000

Prototyping Cycles 1 $2,500 $14,000 1 $2,500 $12,800 2 $10,000 $49,000 2 $10,000 $44,000

Beta Production Cycle 0 – – 1 $2,500 $12,800 0 – – 1 $5,000 $23,000

Volume Production1 Cycle 1 $15,000 $3,000 1 $15,000 $3,000 1 $30,000 $3,000 1 $30,000 $3,000

Total Cost  $17,500 $17,000  $22,500 $42,600  $40,000 $52,000  $55,000 $119,000

HRDT Advantages     

Hard costs  -$500  $20,100  $12,000  $64,000

Development Time Savings  $30,000  $90,000  $120,000  $270,000

HRDT Total Advantages  $29,500  $110,100  $132,000  $334,000

 

Assumptions Low Optics Complexity High Optics Complexity 

Cost of first mold $12,000 $25,000 

Savings for subsequent molds (both in time and $$) 10% 20% 

Cycle time to make mold (in weeks)2 4 8 

HRDT weeks saved per cycle 3 7 

Development savings per week $10,000 $10,000 

Beta Production Quantity 0 10 

Volume Production Quantity3 1,000 1,000 

 

1 Example assumes volume production is always molded 
2 Molds vary considerably in complexity, time needed to make them also varies, 4–12 weeks or even longer 
3 Break even point is often achieved at production volume of 100, example assumes 1000 

Figure 7. Total cost comparison 



 

 

Pushing The Polymer Envelope White Paper 

Copyright © 2005 Syntec Technologies, Inc. Page 14 

Summary 

Given the major drivers of lowering cost and removing space and weight limitations, new materials 
and new processes would clearly open even more markets for polymers — markets that do not exist 
now as well as markets that would clearly grow “if only….” 

Some soluble barriers and markets are clearly identified 

If there were polymer optics materials suitable for higher ranges of IR applications, many security and 
defense-related solutions become economically feasible. 

For example, army field operations personnel carry up to 120 lbs of supplies and equipment, very 
tiring since the average foot soldier is 170 lbs. These include the hand-carried imaging units that 
provide visibility to the unmanned surveillance and detonation vehicles in high action regions, both 
airborne (UAV) and ground (UGV). These imaging units commonly utilize FLIR (forward looking 
IR) or general Infrared systems that operate in the 3–5 micron and 8–12 micron range, giving them 
ample access in either high or no light conditions, even sand storms or blizzards. Currently no 
polymers transmit significantly (greater than 70%) past 2.2 microns; in fact, none today transmit past 
38%. As a result, the materials used for these tasks are inherently costly (about forty dollars per gram), 
heavy (5.3 g/cm3) and subject to expensive optical techniques of grinding and polishing. 

If such material existed, a plastic solution would cost on the order of thirteen cents per gram, be 
capable of moldable openings for a wide array of possible aerodynamic or protection lens 
configurations, and most importantly, be light weight (1.1 g/cm3, a fifth of the current weight). This is 
a huge savings for the field personnel that can translate into longer flying or driving range or more 
fuel, ammunition or other troop supplies. Moreover, if you extend the range of materials that can be 
processed without a mold, many experimental or low-volume applications become practical. 

Other barriers to be tackled include: 
� More thermally stable materials. Currently the index of refractions shifts significantly with 

temperature (dN/dT) in plastics. Stabilizing the index over broader ranges is critical for further 
acceptance of polymer options. 

� Higher temperature materials for the visible range. 
� Harder surface resistances for better scratch avoidance. 

Some barriers are not technical, but rather awareness and collaboration 

Sometimes, the barriers are not technical. For example, while popular culture may equate DNA ID 
and/or unmanned air and ground vehicles with super expensive “Star Wars” solutions, many 
opportunities exist for using these technologies to improve everyday life. Unmanned airborne vehicles 
for the forestry service or law enforcement, news or traffic reporting; better security systems for the 
home or for baby monitoring; high heat high index materials for DNA identifications for medical 
applications are all possible today. Similarly the time may well be here for most cars to have night 
vision systems. Plastic optics can pave the way to make all of these a cost effective consumer reality. 

While it will take serious collaboration between and among optics companies and the organizations 
developing products to address economic issues, it is in the long-term best interest of all of us to work 
together. Often one organization or another is rightly concerned with the importance of protecting 
valuable knowledge assets. However, there are many reasons to work to maintain a balance. To quote 
John Seely Brown, author of the bestselling The Only Sustainable Edge: Why Business Strategy 
Depends on Productive Friction and Dynamic Specialization, “When an organization goes out of its 
way to make sure that no idea ever leaks out, the consequence is that no idea ever leaks in either.” 
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Design is front and center 

The main premise of this paper is that the major keys to continued polymer optics expansion are the 
specific characteristics of available materials and the sophistication of manufacturing processes in 
implementing designs. With respect to desirable polymer characteristics, some may require a new 
class of polymer from materials manufacturers, but many more are being achieved by introducing new 
grades of materials, optimized appropriately in much the same way as glass. With respect to the 
sophistication of manufacturing processes, the level increases steadily as optics manufacturers find 
innovative ways to use molding or machining as costs, volumes and applications dictate. 

The major drivers continue to be the relentless need to integrate into more and more applications with 
smaller, higher performing components, in lighter packaging, at lower cost and superior reliability. 
Note the critical role of design. At Syntec, we take the perspective that product design, tooling and 
molding design, and total manufacturability design of the completed assembly are not individual static 
specifications but dynamic, interrelated parts of a total solution. Fundamentally, we believe this 
approach of systematically building upon everyone’s capabilities is the best way to push any envelope, 
including the polymer optics envelope. 

This paper was originally presented by author, Paul R. Tolley, 
at the SPIE 2005 Optics & Photonics conference in San Diego, 
and subsequently published in the Conference Proceedings. 

Paul Tolley is Vice President and General Manager of Syntec 
Technologies, Inc., and co-developer of patent pending HRDT 
(High Refraction Diamond Turning) process. 




